

Scientific Computing

scd.stfc.ac.uk

Phase behaviour of coarse-grained liquids with soft attractive-repulsive potentials

Michael Seaton, Vlad Sokhan, Ilian Todorov

UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Warrington, WA4 4AD, United Kingdom

We propose a new pairwise bounded interaction potential based on the Groot-Warren interaction¹ commonly used for mesoscopic Dissipative Particle Dynamics (DPD) simulations:

$$\mathbf{F}_{ij}^{C}(r_{ij}) = A \left[b \left(1 - \frac{r_{ij}}{r_c} \right)^n - \left(1 - \frac{r_{ij}}{r_c} \right) \right] \frac{\mathbf{r}_{ij}}{r_{ij}}$$

with repulsive parameters A and b, power index n and cutoff distance r_c (equivalent to particle size a_0). This *nDPD* potential (as shown in Figure 1) includes both soft-core repulsion and attraction, enabling coexistence of multiple phases below the critical point, and reduces to 'standard DPD' when b = 2 and n = 1.

A modified version of DL_MESO^{2,3} was used to carry out single-component DPD simulations with *n*DPD interactions, using a Langevin barostat⁴ for constant pressure ensembles. Three integer power indices (n) - 2, 3 and 4 – were investigated with the corresponding values of A and b and resulting critical properties given in the table below.

n	A	b	T _c	p _c	ρ _c
2	25.0	3.02	1.025	0.2951	0.519
3	15.0	7.2	1.284	0.3979	0.504
Λ	10.0	15.0	1 286	0 1095	0 4 8 4

Figure 1: 'Standard DPD' Groot-Warren potential (orange), *n*DPD with n = 2 (green), n = 3 (red) and n = 4 (blue), and Lennard-Jones (purple, inset). Note attractive region for $\sigma \approx 0.5 a_0 < r < a_0$

A simulation setup elongating the box in one $\sum_{n=1}^{\infty}$ Maxwell dimension (Figure 2) and constructions for states close to the critical point were used to obtain gas-liquid coexistence curves (Figure 3). While the gas branch is insensitive to n, variations in liquid behaviour occur from convex (n = 2) to realistic concave (n = 4) liquid branches. These variations can be eliminated by increasing the values of \boldsymbol{b} above the minimum values required for thermodynamic stability (Figure 4).

NPT simulations starting with solid and liquid phases joined together were used to find the solid-liquid transition (Figure 5). Unusual **properties** observed for n = 4 include:

 $(T^* \approx 0.092)$ freezing point IOW compared with real fluids (e.g. triple point ρ_{α}

boxes – used to estimate densities of coexisting gas and liquid states (density profile in green with phase interfaces at $z \approx \pm 10a_0$)

Figure 2: Slab simulation setup – elongated periodic Figure 3: Coexistence curves for nDPD using n = 2,3,4with gas and liquid branches (note variation in concavity in latter with n). Black dot denotes critical point (curves rescaled to $T^* = 1$), radial distribution functions (liquid branches at $T^* = 0.4$) in insets.

of water at $T^* = 0.577$)

- Temperature of maximum density (TMD) just above the freezing point ($T^* \approx 0.11$)
- Negative thermal expansion (NTE) of solid phase (contraction upon heating), as observed in ice⁵, a few elemental metals/metalloids (e.g. gallium, silicon) and more complex soft matter

Minimum values of b are required to ensure thermodynamic stability and prevent high density singularities. Multiple energy minima – particularly noticeable for n = 2 – could result in polymorphic solids (e.g. fcc and bcc phases as shown in inset).

Figure 5: Temperature dependence of density around solid-liquid phase transition, including NTE of solid phase. Green line shows transition temperature, black dot gives temperature of maximum density (TMD)

References:

- RD Groot and PB Warren, J Chem Phys **107** (11), 4423–4435 (1997)
- MA Seaton, RL Anderson, S Metz and W Smith, Mol Sim 39 (10), Matter): 796-821 (2013)
- MA Seaton, *Mol Sim* **47** (2–3), 228–247 (2021) 3.
- AF Jakobsen, J Chem Phys **122**, 124901 (2005)
- G Dantl, Z Phys **166** (1), 115–118 (1962) 5.

Article on arXiv (submitted to Soft

□1.3^H. https://doi.org/10.48550/ arXiv.2301.00465

Acknowledgements:

This work was supported by UKRI STFC's Innovation & Development Programme (IDP). Computing resources were provided by UKRI STFC Scientific Computing Department's SCARF ARCHER2 cluster and (www.archer2.ac.uk) through the High-End Computing Materials Chemistry Consortium (MCC).