Hybrid Modeling of Mixed Perovskite Oxides with **Gaussian Process Regression: Overcoming Data Scarcity**

Franz M. Rohrhofer^{1,*)}, Jean-François Paul²⁾, Bernhard C. Geiger¹⁾, Elise Berrier²⁾

1) Know Center Research GmbH, Sandgasse 34, 8010 Graz, Austria 2) Université Lille, CNRS UMR8181, Unité de Catalyse et de Chimie du Solide, UCCS, F-59655 Villeneuve d'Ascq, France *) Corresponding author: frohrhofer@know-center.at

Development of science-based electrode materials for reversible chemical-to-power cells (fuel cell, electrolytic cell), enabling efficient energy conversion and storage.

Key Benefits:

Supports renewable energy integration by storing excess

Modeling Mixed Perovskite Oxides is challenging due to

- Data scarcity in high-fidelity simulations and experimental measurements.
- Compositional complexity due to the vast number of elements considered in the composition^[1].
- Computational expenses as first-principles methods, like Density Functional Theory (DFT), are accurate but costly.

- power as carbon-free fuel.
- Focuses on Mixed Perovskite Oxides with reduced critical content while maintaining high performance and economic viability.
- Objective: uncovering correlations between composition, structure, activity, and performance in Perovskite-based electrode materials using multi-scale modeling, advanced characterization, and machine learning.

Hybrid modeling with Gaussian Process Regression can help in modeling Mixed Perovskite Oxides by:

- Learning structure-property relationships from limited data.
 - Predicting key material properties, like DFT energies, accurately & efficiently.
 - Reducing reliance on expensive simulations or experiments.

Gaussian Process Regression

- Models target property *E* as non-linear, continuous function, E = f(x).
- Fits data examples $\{(x^i, E^i)\}_{i=1}^N$ to learn underlying function f.

Mixed Perovskite Oxides $A_{\alpha}A'_{1-\alpha}B_{\beta}B'_{1-\beta}O_{3\pm\delta}$

Structure Representation

- Uses descriptors/features to define space in which similarity is measured.

Compositional features by group & period of elements A,A',B, and B'.

- Measures similarity through kernel k(x, x') with $k \to 1$ as $||x - x'|| \to 0$.
- Relies on structure representation x.

Prediction (on new data x^*)

 $E(x^*) = \sum_{i=1}^{N} \lambda^i k(x^i, x^*)$

– Doping features by A- and B-site doping levels α and β .

Composite kernel (to measure similarity)

k = $\cdot \ [k_B + k_{B'}]$ k_{β} doping composition doping composition A-site B-site

Hybrid Modeling of DFT Energies

... under Data Richness

Training Data Metrics Data Examples: 1500 *R*²: 98.78% MAE: 61.8 meV **Test Data Metrics**

-6

[eV]

Data mined from the **Materials Project**^[2] $A_{\alpha}A_{1-\alpha}'B_{\beta}B_{1-\beta}'O_{3}$

... under Data Scarcity

References

[1] Tao, Qiuling, et al. "Machine learning for perovskite materials design and discovery." Npj computational materials 7.1 (2021): 23. [2] Jain, Anubhav, et al. "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation." APL materials 1.1 (2013).