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The KNOWSKITE-X Project
Development of science-based electrode materials for

reversible chemical-to-power cells (fuel cell, electrolytic cell),

enabling efficient energy conversion and storage.

▪ Key Benefits:

− Supports renewable energy integration by storing excess 

power as carbon-free fuel.

− Focuses on Mixed Perovskite Oxides with reduced critical 

content while maintaining high performance and economic 

viability.

▪ Objective: uncovering correlations between composition, 

structure, activity, and performance in Perovskite-based 

electrode materials using multi-scale modeling,

advanced characterization, and 

machine learning.

Problem Formulation
Modeling Mixed Perovskite Oxides is challenging due to 

▪ Data scarcity in high-fidelity simulations and experimental 

measurements.

▪ Compositional complexity due to the vast number of 

elements considered in the composition[1].

▪ Computational expenses as first-principles methods, like 

Density Functional Theory (DFT), are accurate but costly.

Hybrid modeling with Gaussian Process Regression can 

help in modeling Mixed Perovskite Oxides by:

− Reducing reliance on expensive simulations 

or experiments.

− Predicting key material properties, like DFT

energies, accurately & efficiently.

− Models target property 𝐸 as non-linear, 

continuous function, 𝐸 = 𝑓(𝑥).

− Fits data examples 𝑥𝑖 , 𝐸𝑖
𝑖=1

𝑁
to 

learn underlying function 𝑓.

− Measures similarity through kernel 

𝑘(𝑥, 𝑥′) with 𝑘 → 1 as 𝑥 − 𝑥′ → 0 .

− Relies on structure representation 𝑥.

− Compositional features by group

& period of elements A,A′,B, and B′.

− Doping features by A- and B-site

doping levels 𝛼 and 𝛽.

− Learning structure-property relationships from limited data. 
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− Uses descriptors/features to define

space in which similarity is measured.
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Hybrid Modeling of DFT Energies
… under Data Scarcity… under Data Richness

Data mined from the

Materials Project[2]
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Generated Data

La𝛼Sr1−𝛼Co𝛽Fe1−𝛽O3

Funded by the EUknowskite-x.eu

References
[1] Tao, Qiuling, et al. "Machine learning for perovskite materials design and discovery." Npj

computational materials 7.1 (2021): 23.

[2] Jain, Anubhav, et al. "Commentary: The Materials Project: A materials genome approach 

to accelerating materials innovation." APL materials 1.1 (2013).


	Folie 1

