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Phase behaviour of coarse-grained liquids with
soft attractive-repulsive potentials
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We propose a new pairwise bounded interaction potential based on the Groot-Warren

interaction” commonly used for mesoscopic Dissipative Particle Dynamics (DPD)
simulations:
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with repulsive parameters A and b, power index n and cutoff distance r. (equivalent to 0.0 0.2 0.4 0.6 0.8 1.0
particle size a,). This nDPD potential (as shown in Figure 1) includes both soft-core r/a,
repulsion and attraction, enabling coexistence of multiple phases below the critical point,
and reduces to ‘standard DPD’when b =2 and n = 1. Figure 1: ‘Standard DPD’ Groot-Warren potential

(orange), nDPD with n = 2 (green), n = 3 (red) and

A modified version of DL MESO23 was used to carry out single-component DPD ™ =4 (blue), and Lennard-Jones (purple, inset). Note
simulations with nDPD interactions, using a Langevin barostat* for constant pressure attractive region for o =~ 0.5a, <7 < ay
ensembles. Three integer power indices (n) — 2, 3 and 4 — were investigated with the

corresponding values of A and b and resulting critical properties given in the table below.

n A b T, p. p_ 1o fgas jquid
2 250 3.02 1.025 0.2951 0.519 branch branch 1 f
3 150 7.2 1.284 0.3979 0.504 @l) ' )
4 100 150 1.286 0.4095 0.484 10- ol o
A simulation setup elongating the box in one % O v v = 31 _,
dimension (Figure 2) and Maxwell s | [Loa R - . o B Py =
constructions for states close to the critical W RN i P N
point were used to obtain gas-liquid o o A n=3
coexistence curves (Figure 3). While the | 2 3 % 4 | |
gas branch Is insensitive to n, variations In ° 10 ; 0 0 1 2 3 4 5
liquid behaviour occur from convex (n = 2) to / 0,
realistic CO_nC_ave (n=4) IIqUI.d _branCheS' Figure 2: Slab simulation sze?ap — elongated periodic Figure 3: Coexistence curves for nDPD using n = 2,3,4
These variations can be eliminated Dy poxes - used to estimate densities of coexisting gas with gas and liquid branches (note variation in
increasing the values of b above the andliquid states (density profile in green with phase  concavity in latter with n). Black dot denotes critical
minimum values required for thermodynamic interfaces at z ~ +10a,) point (curves rescaled to T* = 1), radial distribution
stability (Figure 4). functions (liquid branches at T* = 0.4) in insets.
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solid-liquid transition (Figure 5). Unusual B P — sl )
properties observed for n = 4 include: Pl 02 03 04 o ~ e .
- A low freezing point (T*~0.092) | S p=802 g St
compared with real fluids (e.g. triple point / — b=208 2  — b=140 R .
of waterat T™ = 0.577) 02 04 06 08 1.0 02 04 06 08 1.0 1.95 ‘.0"
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’ _Temperature of qumum denS|ty (TMD) Figure 4: Potential energies per particle calculated for *
just above the freezing point (T* = 0.11) different values of b for n = 2 (left) and n = 4 (right). " o005 o010 o015 020 025 030 035

Minimum values of b are required to ensure T

thermodynamic stability and prevent high density  Figyre 5: Temperature dependence of density around
singularities. Multiple energy minima — particularly solid-liquid phase transition, including NTE of solid

* Negative thermal expansion (NTE) of solid
phase (contraction upon heating), as
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observed in ice®>, a few elemental noticeable for n = 2 — could result in polymorphic  phase. Green line shows transition temperature, black
metals/metalloids (e.g. gallium, silicon) and  solids (e.g. fcc and bee phases as shown in inset). dot gives temperature of maximum density (TMD)
more complex soft matter
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