Unfolding the prospects of computational (bio)materials modeling

EMMC related publication by G. J. Agur Sevink, Jozef Adam Liwo, Pietro Asinari, Donal MacKernan, Giuseppe Milano, and Ignacio Pagonabarraga

Published on 09.09.2020
Published by EMMC

The Journal of Chemical Physics, Volume 153, issue 10 /


In this perspective communication, we briefly sketch the current state of computational (bio)material research and discuss possible solutions for the four challenges that have been increasingly identified within this community: (i) the desire to develop a unified framework for testing the consistency of implementation and physical accuracy for newly developed methodologies, (ii) the selection of a standard format that can deal with the diversity of simulation data and at the same time simplifies data storage, data exchange, and data reproduction, (iii) how to deal with the generation, storage, and analysis of massive data, and (iv) the benefits of efficient “core” engines. Expressed viewpoints are the result of discussions between computational stakeholders during a Lorentz center workshop with the prosaic title Workshop on Multi-scale Modeling and are aimed at (i) improving validation, reporting and reproducibility of computational results, (ii) improving data migration between simulation packages and with analysis tools, (iii) popularizing the use of coarse-grained and multi-scale computational tools among non-experts and opening up these modern computational developments to an extended user community.
Share on: